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Abstract.

In a great variety of laboratory experiments over large intervals in stress, strain,

and frequency, rocks display pronounced nonlinear elastic behavior. Here we describe
nonlinear response in rock from resonance experiments. Two important features of
nonlinear resonant behavior are a shift in resonant frequency away from the linear
resonant frequency as the amplitude of the disturbance is increased and the harmonics in
the time signal that accompany this shift. We have conducted Young’s mode resonance
experiments using bars of a variety of rock types (limestone, sandstone, marble, chalk) and
of varying diameters and lengths. Typically, samples with resonant frequencies of
approximately 0.5-1.5 kHz display resonant frequency shifts of 10% or more, over strain
intervals of 107 to 10~ ° and under a variety of saturation conditions and ambient
pressure conditions. Correspondingly rich harmonic spectra measured from the time signal
progressively develop with increasing drive level. In our experiments to date, the resonant
peak is observed to always shift downward (if indeed the peak shifts), indicating a net
softening of the modulus with drive level. This observation is in agreement with our pulse
mode and static test observations, and those of other researchers. Resonant peak shift is
not always observed, even at large drive levels; however, harmonics are always observed
even in the absence of peak shift when detected strain levels exceed 10~ or so. This is an
unexpected result. Important implications for the classical perturbation model approach to
resonance results from this work. Observations imply that stress-strain hysteresis and
discrete memory may play an important role in dynamic measurements and should be
included in modeling. This work also illustrates that measurement of linear modulus and
QO must be undertaken with great caution when using resonance.

Introduction

Observation of nonlinear elastic response in rock is not a
new or novel revelation. For example, one well known mani-
festation of this behavior is demonstrated by countless quasi-
static measurements on rock of velocity (or modulus) versus
applied stress [e.g., Birch, 1966]. These tests show a strong
nonlinear dependence between stress and strain (or modulus
and stress), in addition to the phenomena of hysteresis and
discrete memory (also termed end point memory) [e.g., Hol-
comb, 1981]. These phenomena are due primarily to compliant
features in the rock (cracks, grain boundaries, joints, etc.) [e.g.,
see Gist, 1994] and fluid effects. More recent dynamic studies
of transient waves in rock at atmospheric pressure demonstrate
that rock has a large nonlinear response at relatively small
strains [e.g., Van Den Abeele, 1996; Johnson and Rasolofosaon,
1996; Guyer et al., 1995a, b; Liu, 1994; Johnson and McCall,
1994; Meegan et al., 1993; Ostrovsky, 1991; Bakulin and Proto-
senya, 1982; Bonner and Wanamaker, 1991; Johnson and Shank-
land, 1989; Zinov’yeva et al., 1989; Beresnev and Nikolaev, 1988;
Johnson et al., 1987; Bulau et al., 1984]. The existence of a
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significant nonlinear elastic response at even moderate strains
is not commonly appreciated.

Our intention here is to describe, and in some cases, to
interpret manifestations of nonlinear elastic phenomena in-
duced by resonating a bar of rock in Young’s mode. We will
emphasize resonant peak shift and harmonic generation, but
other unexpected, complex behavior resulting from resonant
excitation as observed in some rocks such as chalk will also be
described. A surprising result of our work is that nonlinear
behavior is not necessarily linked with resonant peak shift.
That is, resonant peak shift always indicates that the material
is responding nonlinearly; however, nonlinear response may
exist without measurable resonant peak shift. On the other
hand, it will also be shown that resonant peak shift may begin
at even the lowest drive levels in rock and that peak shift and
peak width is dependent on sweep direction. This result illus-
trates that measurement of moduli and Q must be undertaken
with great caution.

In the first section the classical theoretical approach to de-
scribing a nonlinear oscillator will be illustrated. Following
this, the experimental procedure will be described, followed by
sections describing the results, discussion, and conclusions.

Qualitative Theory and Measured Quantities

Nonlinear resonance has been discussed by many authors
and treatments can be found in numerous texts [e.g., Stoker,
1950]. It is not our purpose here to review theory in detail. This
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has already been done by Guyer et al. [1995a, b], Van Den
Abeele [1996], and others. Therefore the nonlinear resonance
theoretical development will be only briefly covered in this
section as it relates to the measurements taken and the quan-
tities calculated.

In the classical approach to describing wave propagation in
a nonlinear material, the energy density is expressed as a func-
tion of the scalar invarients of the strain tensor [e.g., Landau
and Lifshitz, 1986]. The strain energy is typically expanded to
higher order resulting in an equation of state where stress is
expressed as a function of the strain by a series expansion of
the modulus in strain. The standard approach applied to one
dimensional problems is for a lumped element (spring-mass)
system, as discussed by McCall [1993], Guyer et al. [1995a, b],
Van Den Abeele [1996], and others. This approach leads to the
equation of motion for the displacement field of

u 9 , u )
a2 " ax \Cax) (1)

c2:c3[1+3<%>+8<§—z>2+---], (2)

¢ is the perturbed wave speed, ¢, is the unperturbed wave
speed, u is the displacement, du/dx is strain &, and B and & are
coefficients that characterize cubic and quartic anharmonicities
(they are the nonlinear coefficients). The equation of motion is
generally solved by perturbation theory, using u = u, + u,
with u, being the linear displacement and u,, its perturbation
(the method of characteristics is also a commonly applied
approach [e.g., Courant and Friedrichs, 1948]). If u,, is an ini-
tially periodic function, for example [A cos (w,7)], where T =
t — x/c,, the equation of motion will contain terms such as [4?
sin? (w,7)] and [4? sin® (w,7)]. Trigonometric expansion shows
that other frequencies such as cos (2w,7) and cos (3w,T), etc.,
are created. This is fundamentally the classical explanation for
the existence of harmonics. Without the higher-order strain
dependent terms in velocity, harmonics do not exist: the system
is linear.

In the classical treatment of resonance, the bar is treated as
a lumped element responding to

Here,

au’/at = —k*cu, (3)

where k is wavenumber and c is the wave speed shown in (2).
The average of the strain field over one period is assumed zero
(it may not be), so the quadratic term S is normally eliminated.
Therefore, using classical theory, it is the determination of &
that is the goal of the resonance experiment. Following Guyer
et al. [1995b], the term proportional to § can be replaced by its
time-averaged value:

(%), = 8|(au/ax)?| = 8(ew)’, 4
in which &, is the maximum strain magnitude along the bar.
Equation (2) can then be rewritten as
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where o, is the angular frequency of the “linear” resonant
peak and w is the angular frequency of the resonant peak as it
shifts with strain amplitude. Our experiments are configured to
measure Q, w, and w, and the acceleration (9%u/dt?) at any
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desired drive level or frequency, at the opposite end of the bar
that is driven. Therefore we can, in applying classical theory,
determine 8, the cubic nonlinear parameter.

We are also capable of measuring the harmonic amplitudes
of the time signal, typically when the resonance is at maximum
value, using the identical experimental configuration. Using a
wave propagation result as a comparison, we can obtain a §
from measurement of the third harmonic amplitude:

(0%us/9t*) wyL?
ENCTTTA ©)
where L is the bar length, (92u,/8t?) is the acceleration of the
third harmonic at resonance, and (9%u,/d¢%) is the accelera-
tion of the fundamental frequency at resonance. Similarly,
from the second harmonic amplitude (if it exists) we can obtain
an approximation of

(0%u,/9*) wi L
R CETET M

A classical result from analysis of nonlinear oscillators [e.g.,
Stoker, 1950] is that they are hysteretic in their amplitude-
frequency behavior (not to be confused with hysteresis in stress
versus strain!). That is, the measured acceleration (likewise
strain and displacement) depends on which direction the driv-
ing frequency is swept, meaning that the amplitude is not
uniquely determined by the applied forcing function. This be-
havior will be illustrated in the. results section.

The lumped element assumption implies that stress o, strain
¢, and displacement u are homogeneous in the sample as a
function of time. In reality, this is not the case because the
system is elastic. Stress and strain are maximum at the center
of the bar (in absolute value) and minimum at the bar ends.
Displacement is maximum at the bar ends and minimum in the
bar center; however, solution to the elastic resonance equation
of motion provides nearly identical results to those above.

We are interested in the frequency response as a function of
strain, in general, because this is a standard quantity in geo-
physics. What is actually measured is time-averaged accelera-
tion,

” u 2 2
(i), = 9] = ou), = wyA. (8)
t
Because the first longitudinal resonance mode occurs when the

wavelength is precisely half the bar length, the strain is

e= 0= o u—-—zLUu, 9)

where again u is displacement and L, is the bar length at rest.
From (8) and (9) the maximum strain magnitude is then

(i),
Em = <8>1 =2 L()U)z.

(10)

The displacement amplitude at the bar ends is given by (&i),/
2.

Linear Young’s modulus E,, another quantity that will be
illustrated, is obtained from the fundamental resonance fre-
quency measured at low drive voltage in the strain interval of
107®-10"° (approximately linear regime). From the mass den-
sity p and length L the modulus is
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where w, is the fundamental resonant bar frequency at linear
elastic strain and C is the Young’s mode velocity at w,.

Experimental Procedure

The basic elements of the experimental configuration for
obtaining frequency versus acceleration measurements are
shown in Figure 1. We use both an analog or digital experi-
mental apparatus, depending on the desired result. In general,
the analog method is superior when it is necessary to observe
a large dynamic range. The digital method is fast and conve-
nient but has the disadvantage of a smaller dynamic range.

Using the analog method, a frequency sweep interval that is
chosen to encompass frequencies well above and well below
the fundamental resonant mode of the sample is used. The
signal is amplified and acoustically excited by an electromag-
netic (coil/magnet) source affixed parallel to the axis of the
sample. Piezoelectric and shaker-type sources are also used.
The signal is detected by use of a calibrated accelerometer,
time averaged, and frequency versus maximum acceleration is
plotted and/or stored digitally. A digital oscilloscope is used for
monitoring the time series signal. Measurements are made of
both upward and downward frequency sweeps over the chosen
interval. Typically, 5-20 experiments are conducted at succes-
sively increasing drive voltages over the same frequency inter-
val in order to monitor resonant peak shift and harmonic
generation. A single sweep is typically 1-5 min in duration,
depending on the Q of the material. For accurate results,
high-Q materials tend to require a longer sweep time.

The digital measurements are made with a PC that contains
a card that has both a function generator and a heterodyne
detector. In this configuration, a constant amplitude drive sig-
nal output from the card is multiplied with the detected signal
from the rock. The multiplied signal is time averaged and
low-pass filtered providing a dc output proportional to the
detected acceleration. The PC also contains a 16-bit A-D card
for capturing time signals for harmonic analysis.

Measurements of at least nine different rock samples were
made. These include Berea sandstone [see, e.g., Krech et al.,
1974], Meule sandstone, Lavoux limestone, magnesium mar-
ble, Estaillades limestone, St. Pantaleon limestone, Asian mar-
ble, Chalk, Fontainebleau sandstone, and Carrera marble (for
more information regarding these rocks, excluding the Berea,
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Figure 1. Experimental configuration. A and B refer to lo-

cations of pulse mode travel time measurements. See text for
further explanation.
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Figure 2a. Detected acceleration versus swept frequency for

a sequence of resonance curves at twelve different excitation
levels in polyvinyl chloride (PVC). Both downward and upward
frequency sweeps are plotted; however, they are indistinguish-
able from each other (Note that the wobbly character of the
curves is due entirely to the digitizing process for graphics
representation and has nothing to do with the material char-
acteristics.)

see Lucet and Zinszner [1992]). Comparative studies were con-
ducted using the relatively elastically linear materials alumi-
num, PVC, Plexiglas, Pyrex glass, porous sintered aluminum,
and polycarbonate. For several rock samples, including Meule
sandstone, Lavoux limestone, and chalk, measurements were
taken at numerous water saturation levels between approxi-
mately 1 and 99%. In each case, the sample was saturated after
evacuation, and measurements were made as the rock dried
under room conditions. Densities were estimated from the dry
weight and the measured porosity. Sample lengths ranged from
0.30 to 1.15 m and diameters ranged from 0.025 to 0.105 m.

Results
Typical Behavior of Elastically “Linear” Solids

Figure 2a shows a sample sequence of resonance curves for
twelve different excitation levels in polyvinyl chloride (PVC), a
material that is relatively elastically “linear” in comparison
with most rocks. Figure 2a shows detected acceleration versus
swept frequency. Both downward and upward frequency
sweeps were conducted at each drive level; however, they are
indistinguishable from each other. Note the O (59) is similar to
many rocks. Figure 2b shows excitation-strain data collected at
the resonant peak excitations in polycarbonate, another “lin-
ear” material, from a nearly identical experiment to that shown
in Figure 2a (the resonant peaks are of the same character as
those for PVC, i.e., no peak shift is observed). Note that the
excitation versus strain curve is related to stress versus strain
because excitation is linearly proportional to stress. The exper-
iment differs slightly in that at each resonant peak, the drive
frequency and excitation level are held constant, while the time
signal is collected and averaged to improve the signal to noise
ratio. The averaged signal is then Fourier analyzed, and the
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Figure 2b. Excitation level versus strain in polycarbonate,
another “linear” material compared to rock. The solid line
shows the fit to the data (open circles) of the drive excitation
level in milliamperes (Y axis) versus the strain level (X axis).
Error bars are of the order of the circle sizes. The harmonic
ratio, if it existed over this strain interval, would be plotted as
well; as there were no harmonics observed, none are plotted.
Note that the resonance curves show no peak shift, just as
those for PVC.

relative harmonic amplitudes are measured. In this strain
range, no harmonics were observed. In addition, all of the
“linear” materials studied have a constant derivative of d(ex-
citation)/do, that is, a linear stress-strain relation, implying
they have a single modulus in the strain ranges studied (see
below). This plot will be compared to that for a rock shortly.

We indicate several key observations from Figures 2a and 2b
that can be regarded as representative for “linear” solids. In
general, these materials: (1) show no detectable peak shift; (2)
display a linear relationship between excitation and strain; and
(3) show a low level of harmonics compared to rock.

Based on the resolution of our system we consider that the
level of harmonic generation in “linear” solids is near the limit
of our current resolution (using a 12-bit digital oscilloscope
and averaging signals). These three observations are represen-
tative of all of the “linear” elastic materials listed above (as
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cautionary note, the experimental apparatus does not provide
the frequency resolution to quantitatively study high-Q mate-
rials such as aluminum). When harmonics are observed in
these materials, they are inferred to originate from the re-
sponse of the materials themselves because harmonics are not
observed in all of the “linear” elastic materials (e.g., sintered
aluminum), and the relative harmonic levels vary from “linear”
material to material. This would not be the case if the source
(especially electromagnetic hysteresis) or electronics were the
cause or the harmonics. The results of attenuation, sample
dimensions, frequency shift, modulus, detection of harmonics,
and strain levels on elastically “linear” materials studied are
displayed in Table 1. The values for attenuation were obtained
after careful inspection of the data to be certain that the results
were not influenced by the existence of harmonics and peak
shift.

Typical Behavior of Elastically Nonlinear Solids: Rock

In Figure 3a, a representative result for Young’s mode res-
onant behavior in rock is shown. The material is Lavoux lime-
stone under ambient conditions. Compare this result to that of
PVC shown in Figure 2a. The difference in the character of the
resonance sweeps as a function of amplitude is striking. Figure
3b shows results for Fontainebleau sandstone also at ambient
conditions. The middle plot of Figure 3b shows the resonant
peak shift, and the bottom and top plots show the correspond-
ing time and frequency domain signals at low (but nonlinear)
drive level and large drive level, respectively. Note that the
linear resonant response has been expanded vertically in both
Figures 3a and 3b in the insets.

Peak Shift and Frequency Hysteresis in Rock

In the resonance sweeps shown in Figures 3a and 3b, the
solid lines represent downward frequency sweeps, and the
dashed lines represent upward frequency sweeps. Two obser-
vations are of note. First, the peak shift is marked as a function
of detected acceleration in these samples. Second, the shape of.
the curve depends on in which direction the sweep takes place,
upward or downward in frequency. This second observation is
typical of nonlinear oscillators in general [e.g., see Stoker,
1950]. Qualitatively, the resonant frequency shift and the dif-

Table 1. Coefficients for Elastically “Linear” Materials

Slope of

Frequency
Length X Shift Excitation- Maximum
Diameter, (Equation Strain Harmonics Detected

Material Q cm %)) Derivative Detected Strain

Sintered aluminum 290 100. X 8. UD linear none 1.2x107°
Plexiglas 27 34. X 4. UD linear 2,3,4 44 x107°
PVCa 59 120. X 8. UD linear 2, 3.0x107°
PVCb 59 61.2 X 10.5 UD linear 2,4,3,6,5,7 53x107°
Aluminum >50,000 35. X 4. 9)8) linear 2,3,4 22x107°
Pyrex glass 2750 93.8 X 4. uD linear 2 22%x107°
Polycarbonate 130 101.6 X 4. UD linear 2,3,4 1.1 x107*

Data shown are inverse attenuation Q; sample length and diameters; the slope of the frequency shift from equation (5) which theoretically
provides a measure of §; the derivative of the excitation versus strain plot which is directly related to the modulus (it is only indicated whether
or not the slope is linear, i.e., constant modulus and a linear equation of state); whether or not harmonics were detected in the time signal at
resonance; and maximum detected strain levels. The numbers of the harmonics show which harmonics were detected and the relative dominance
in amplitude of observed harmonic amplitudes over the range of strain observation. For example, aluminum shows that the second, fourth, and
fifth harmonics were observed, and each successive harmonic amplitude over the range measured was relatively smaller in amplitude. On the
other hand, PVCb shows that the fourth harmonic amplitude dominated over the third, etc. The PVC samples only differed in dimension. UD
(undetectable) indicates that there was no detectable frequency shift using our apparatus.
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Figure 3a. Elastic nonlinear behavior in a rock. Acceleration

versus frequency for nine excitation levels in Lavoux sandstone
at ambient conditions. The inset shows the character of the
linear behavior at an expanded scale.
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ference in upward and downward resonant behavior (frequen-
cy hysteresis) can be thought of as follows. Initially, the mod-
ulus is in its at rest (elastically “linear”) state. At very low, but
successively increasing drive levels, the resonant response may
(but not always) remain at the same frequency, as has been
shown by others [e.g., Winkler et al., 1979; Murphy, 1982; Bulau
et al., 1984]. As the source drive level is increased, the material
net modulus begins to drop, and this is reflected in a drop in
the resonant frequency. As the drive frequency approaches the
modified resonant frequency, naturally, the excitation becomes
larger as well. Larger excitation induces the net modulus to
drop even further, and the resonant frequency in effect “chas-
es” the resonant peak as it steadily shifts downward in response
to larger and larger excitation. This cause and effect relation-
ship takes place until the bar reaches some maximum energy
state proportional to the maximum input energy in the sample.
At this point, as the frequency is decreased further, it passes
through the modified resonant peak and the amplitude drops
rapidly back to the nonresonant value. The net modulus, and
therefore resonance frequency, shifts back to its original, elas-
tically “linear” value. The shift back can be readily observed by
conducting a low-amplitude frequency sweep immediately af-
ter a high-amplitude sweep.

Fontainebleau
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Figure 3b. Acceleration versus frequency for nine excitation levels in Fontainebleau sandstone at ambient

conditions. (middle) The resonant peak shift for both upward (dashed lines) and downward (solid lines)
frequency sweeps. (bottom) and (top) The corresponding time and frequency domain signals at low (but
elastically nonlinear) drive level and large drive level, respectively. The insets shows the character of the linear

behavior.
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As frequency is swept in the upward direction, the modulus
begins again at its rest (elastically linear) state. At larger exci-
tation levels, as the frequency approaches the linear resonant
value and more energy is introduced into the resonating bar,
the net modulus begins to drop as before. In effect, the max-
imum energy state (depending on drive level and material
property) where the resonant frequency is at minimum (as is
the modulus) and the upward swept frequency “meet” and the
frequency passes through the modified resonant peak. This
process takes place over a very short frequency interval as can
be seen by the abrupt increase in acceleration response in
Figure 3a. As frequency increases further, the resonant peak is
modified upward but lags behind the sweep frequency in the
experiments shown. As before, the modulus returns to its at
rest state after excitation.

The corresponding time and frequency domain plots (Figure
3b, bottom and top), for two different resonance peaks corre-
sponding to two different excitation levels, show typical results.
In this case, at low drive (but in the nonlinear response re-
gime), the time signal is distorted, being composed of the
fundamental and third harmonic. As the drive level is in-
creased, the time signal becomes highly distorted, is asymmet-
ric, and has a dc component, all manifestations of elastic non-
linear behavior in the material. The corresponding spectrum
illustrates the rich spectrum associated with large excitation
level. In general, odd harmonics tend to dominate in amplitude
in rock, in contrast to the elastically “linear” materials studied
above.

Figure 4 shows excitation and harmonic ratio versus strain
for the Lavoux Limestone sample at 0.5% water saturation
(note the normalization of the quantities, see Figure 4 cap-
tion). In this case, only the second and third harmonics were
plotted although higher harmonics were present. The plot in-
dicates the following: for dry Lavoux limestone, the third har-
monic dominates in amplitude over the second harmonic, and
the resonant peak shift commences at a slightly larger strain
than the emergence of harmonics. Both the growth of harmon-
ics and the excitation versus strain curve are reasonably rep-
resentative of dry rocks.

We indicate three fundamental observations from Figures 3
and 4 that can be regarded as representative for rock. These
materials (1) generally but not always show resonant peak shift
as a function of drive level; (2) generally but not always display
a nonlinear relationship between excitation and strain over the
strain intervals studied; and (3) can display a rich spectrum of
harmonics at strain levels as low as 1077

A final observation in regards to resonant peak shift is note-
worthy. Depending on the rock and the saturation state, the
resonant peak may begin shifting immediately, even at the
lowest possible applied drive levels and at strain levels that are
extremely small (<10~®). This behavior is not an exceptional
observation in the rocks that were studied. For example, Berea
sandstone shows this behavior at ambient conditions. The on-
set of peak bending at such small strains is an important con-
sideration for measurement of Q and velocity when applying
the resonant bar method.

Change in Resonant Frequency, Harmonics,
and Nonlinear Modulus

As indicated from the classical approximation shown in
equation (5), the cubic nonlinear parameter § is obtained from
the change in angular resonant frequency  as a function of the
strain . Comparison can be made with & obtained from mea-
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Figure 4. Excitation level versus strain and harmonic ratio
versus strain in Lavoux limestone at 0.5% water saturation.
The solid line shows the drive excitation level in milliamperes
(left-hand Y axis) versus the strain level (X axis). The har-
monic ratio of each successive harmonic to the fundamental
detected level is shown by the dashed lines. The curves asso-
ciated with all of the data are second-order polynomial-fits
shown to aid visualization of the data. The ratio values are
shown on the right-hand Y axis, again versus strain. Both
Aw/w, and the harmonic ratios have been normalized to their
minimum values. The ratios of the second U(f2), and third
U(f3) harmonics relative to the first harmonic U(f1) minimum
(the fundamental) are plotted, (Ufi/Uf1)/(Ufi/Uf1) at a strain
of 4.9148 X 107, where fi is f2 or f3. Both f2 and f3 appear first
at this strain level in this case. It is clear from the plot that
harmonics are observed at a slightly lower strain level than the
onset of peak shift. In this case, only the second and third
harmonics were measured although higher harmonics were
present. Compare to Figure 2b for polycarbonate where no
harmonics were observed over this strain interval. Measure-
ment errors are of the same order as the symbol sizes.

surement of the third harmonic amplitude (equation (6)). The
quadratic nonlinear parameter 8 can be obtained from the
second harmonic amplitude (equation (7)).

We plot Aw/w, versus strain ¢ for several data sets. Meule
sandstone, Lavoux limestone, St. Pantaleon limestone, Fon-
tainebleau sandstone, and chalk are shown at various satura-
tion conditions in Figure 5. Two observations from Figure 5
are of note: (1) Aw/w, does not go as the & as predicted by
equation (5); instead, it ranges from a power law relation of
approximately 1.0 to 1.5; and (2) at larger strain the slope of
Aw/w, versus ¢ tends to decrease. The error bars are very small
at large Aw/w, (approximately the diameter of the symbols);
however, error bars are larger at small Aw/w,, (up to a factor of
2). Despite this, it is convincing from the large number of data
that the slope is not two as predicted by classical theory. This
important observation implies the classical theory is inade-
quate for obtaining the nonlinear modulus from the resonant
peak shift in its current state of development for the rocks
described in this paper.

Figure 6 shows how the cubic nonlinear parameter is esti-
mated for Berea sandstone, based on the harmonic calculation
from equation (6). A similar plot can be made using the second
harmonic data using equation (7) to obtain the quadratic pa-
rameter. The outstanding result from Figure 6 is that the cubic
parameter is far too large (>]10'7]), based on our, and others,
measurements of the cubic parameter from pulse mode and
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static tests. Based on a large number of static tests obtained
from the literature, & should be order 10° +1-2 orders of
magnitude (ignoring frequency dependence).

Results for various rocks are tabulated in Table 2 along with
their saturation states and Q and 8. Tables 2 and 3 show that
8 obtained from the third harmonic and the slope of the fre-
quency shift (8 from the resonant peak shift) is also far larger
than expected. The result is the same for the four rocks studied
at all saturation states as well. For example, Table 3 shows the

€

|Aw/w,| versus strain  (see equation (5)) for several rocks under various saturation conditions.

results for Lavoux limestone at all saturation states. We will
address the above issue further in the discussion section.

Ultrasonic Pulse Mode Velocity Change With
Excitation Level

It is an interesting exercise to measure the pulse mode ve-
locity as a function of the resonant excitation and strain level in
rock, because we expect the velocity to change. The velocity
should decrease with resonance excitation because the net
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Figure 6. The cubic nonlinear parameter & obtained from
the third harmonic data for Berea sandstone. Measurement
errors are of the same order as the symbol sizes; the fit to 8 is
plus or minus an order of magnitude.

modulus drops as a function of increasing resonance excita-
tion. In this experiment we placed piezoelectric transducers on
the top and bottom of the bar near the bar midpoint for lateral
measurement of time delay, perpendicular to the axis of reso-
nance excitation (see A in Figure 1). We then conducted the
resonant sweep measurements at steadily increasing drive lev-
els as before. When the bar is at peak resonance for each
successive excitation level, the time for a pulse to travel across
the bar is measured. The experiment was duplicated with trans-
ducers very near one end of the bar (B in Figure 1). The two
data sets were collected intentionally where the average stress
is maximum (bar center) and minimum (bar end). We would
expect to see a larger effect where the average stress is largest,
if at all (note that the normalized lateral modulus is related to
the longitudinal modulus by Poisson’s ratio, a nonlinear quan-
tity also).

The results are shown in Figure 7. In each case, the wave-
form was averaged while the bar resonated over many cycles.
Thus an average time delay, or equivalently modulus, was
measured across the bar. Errors in measurements are much
smaller than the overall change. As expected, there was no
measurable change in modulus from near the bar end as shown
by the squares. At the bar center, the modulus decreases as a
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Table 3. Physical Properties as a Function of Saturation in
Lavoux Limestone

Slope
Sw, Frequency 8]

0 % Shift (Harmonic)
1000 0.1 —7.36 X 10° -1.92 x 10°
820 0.5 —1.11 x 10° —3.59 x 10°
770 1.0 -1.26 X 10° -1.99 x 10°
700 1.5 —1.60 x 10° -9.10 x 10°
420 4.0 —1.11 x 10° —-8.07 x 10°
440 5.0 —6.05 x 10° -1.72 x 10°
440 8.0 —4.62 X 10° -3.13 x 10°
330 20.0 —1.42 x 10" —1.45 x 10"
360 24.0 -9.15 x 10° —8.13 x 10°
350 31.0 —1.39 x 10%° -1.21 x 10%
280 45.0 -1.13 x 10'° -9.15 x 10°
300 50.0 —9.26 X 10° —1.32 x 10"
310 64.0 —2.04 X 10'° -7.01 x 10°
150 73.0 —1.41 x 10'¢ —6.24 X 10°
80 84.0 —1.31 x 10" —4.49 x 10"
45 98.0 -2.51 x 10" —-9.56 x 10°

Q was obtained at excitation levels that were linear (no harmonics
were observed, and the resonant frequency was stable).

function of excitation level as shown by the dots. This obser-
vation is consistent with all results we are aware on rock in that
it demonstrates a softening nonlinearity of the rock. The B
calculated from the change in modulus is approximately 10% a
value compatible with B calculated from static measurements.

Complex Nonlinear Elastic Behavior: Chalk

In our investigation we have discovered some additional and
unexpected results that seem to be related to rock composi-
tion. Chalk is an example of a rock that shows unique behavior
relative to the other rocks investigated. An illustration of a
sample resonance curve for chalk at a water saturation of
about 45% is shown in Figure 8a. Only the “linear” resonance
peak (expanded vertical scale in inset) and one high drive level
sweep, both upward and downward, are shown. There are two
observations that can be made from this plot and from our
general experience with chalk.

1. The curves do not resemble those of other rocks; in fact,
the curves are an approximate mirror image of the typical
behavior in rock. The abrupt transition in amplitude occurs on

Table 2. Physical Properties of Various Rocks, Shift of the Slope (|Aw/w,| Versus &), Derivative of the Excitation-Strain
Curve, and Maximum Detected Strain at the Peak in Resonance

Slope of

Frequency
Length X Shift Excitation- Maximum
Sw, Diameter, (Equation 8| Strain Detected

Material o % cm 8)) (Harmonic) Derivative Strain

Estaillades limestone 86 30 116.0 X 8.0 -1.3 x 10" 3.28 x 10'° NL 8.8 x 10-7
St. Pantaleon limestone 140 42 115.0 X 8.0 —3.4x 10" NL 1.1 X 10-6
St. Pantaleon limestone 170 18 115.0 X 8.0 -1.3x 10" NL 1.3 X 10-6
ASI marble 360 ~0 49.0 X 4.0 -3.1x 10° 2.91 x 10° NL 3.1 X 10-6
Chalk 225 ~0 63.8 X 9.0 —8.4 x 10" 3.45 x 10" NL 1.3 X 10-5
Meule 4.6 98 107.6 X 5.0 -3.8 x 10° linear 1.7 X 10-5
Berea sandstone 70 UK 30.1 X 5.0 —4.1 x 10'° NL 1.4 X 10-6
Fontainebleau sandstone 100 ~0 39.0 X 4.0 NL 1.1 X 10-5

Q was obtained at excitation levels that were linear (no harmonics were observed, and the resonant frequency was stable). S, refers to

saturation. ASI, Asian marble; UK, unknown conditions; NL, nonlinear.
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Figure 7. Modulus calculated from time delay across the
short direction of a sample of Fontainebleau sandstone during
a typical sequence of resonance sweeps. Measurements were
made near the bar center (squares) and at near the bar end
(dots). The lines are polynomial fits to the data. The result
shown was taken at the bar center; that at the bar end shows no
change within our precision. Error bars are approximately 2-3
times the size of one dot.

the high-frequency side of the nonlinear resonance curve
(compare the plot for Lavoux sandstone in Figure 3a).

2. At large drive level during the downward sweep, the de-
tected signal response oscillates rapidly up and down as it
approaches the resonance peak. We made absolutely certain
that this was an intrinsic effect to the rock and not related to
the electronics, source, or bonding problems.

The harmonic spectrum which was observed but not col-
lected near the region of instability was enormously rich. Har-
monics were observed out to at least 50 kHz. Figure 8b shows
the excitation level versus strain versus harmonic ratios. Note
again the nonlinear excitation-strain curve. Figure 8c shows a
plot of the harmonic spectrum for an experiment with dry

Chalk
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Figure 8a. Resonant sweep data for both upward and down-

ward sweep intervals for partially saturated chalk. Only a low
drive and high drive level result are shown. The “linear” peak
is not to scale but has been expanded vertically in the inset.

11,561
Dry Chalk
210* 4 2 1072
IS
. ! g ]
1.510* t —a— U(R2)/U(f1) +‘l b /i 1.5 10
. | oeumoen | o/ ] .
e H e ussua |, / . ] 5
F gef [ udsua | g 11102 8
g [ e ] g,
= L , ] &
5 '
3 w5 1 3 &
510 r V//' ° 15107 &
< 1 ©
i . .
010° & I IR B S 1) U
010° 510° 1107 15107

Strain

Figure 8b. Excitation-strain-harmonic ratio data for dry
chalk. Measurement errors are of the same order as the symbol
sizes for the excitation and f1, 3, and f5 harmonics. For f2 and
f4 the measurement errors are 2-3 X 10~ in units of harmonic
ratio.

chalk. The plot shows Aw/w, versus strain versus normalized
harmonic ratio for a sample at 0.5% water saturation. The
result shown is typical for a dry sample. Interestingly, in con-
trast to the partially saturated chalk, there is unmeasureable
resonant peak shift, as illustrated by the open circles; however,
the harmonic spectrum is nonetheless extremely rich. Compare
Figure 4 for dry Lavoux limestone. Peak shift and harmonic
generation both occur in the Lavoux which is typical of a rock,
whereas peak shift is negligible in the chalk, while the har-
monic spectrum is rich.

The oscillation in the response for partially saturated chalk
shows an instability not obviously present in other rocks. We
can only infer that chalk has perhaps the most nonlinear re-
sponse of any rock we have investigated as demonstrated by
the harmonic content. The instability may be indicative of the
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Figure 8c. Aw/w, versus strain versus harmonic ratio data for

dry chalk (slightly different saturation than in Figures 8a and
8b). In this plot, measurement errors are of the same order as
the symbol sizes. Both Aw/w, and the harmonic ratios have
been normalized to their minimum values. Note the harmonic
generation but unobservable peak shift. In this case, f1 and f2
appear at a strain of 3.4 X 1077, whereas f5 appears at a strain
of 3.0 X 107 ° In both Figures 8b and 8c the lines represent
polynomial fits to the data to aid the eye.
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onset of chaotic behavior. We were unable to collect spectra in
this region of instability so this hypothesis is currently not
verified. In addition, we can infer from the results for chalk
that much of the energy at the fundamental resonance is trans-
ferred to harmonics, far more so than in other materials stud-
ied. The unique response of chalk is surely due to its unique
composition. We are currently conducting detailed studies of
chalk.

An important lesson from the chalk is that nonlinearity is
not necessarily indicated by peak shift but by monitoring har-
monics and that saturation plays an important role in the
response of the material. This is a clue to our later discussion
on why the classical perturbation theory alone is not suitable
for rocks.

Discussion

We believe the nonlinear coefficients derived from a classical
perturbation expansion of the resonance wave equation are not
realistic in comparison to those obtained from static experi-
ments. We calculate a quadratic nonlinear parameter B8 of
order —10° to —10* and cubic parameters § of —10° to —10%
from a diverse suite of data available in the literature for many
rock types. Other clues indicating that a model invoking a
classical perturbation expansion of the equation of state (or the
strain energy function) is incomplete come from some of the
results presented in this work. For example, the observation in
chalk of a rich harmonic spectrum in the presence of little or
no peak shift is one indication. The incorrect power law de-
pendence as predicted by equation (5) and shown by the plots
in Figure 5 provides an additional and closely related clue.
Evidence from elsewhere suggesting that a classical perturba-
tion expansion is insufficient comes from the large body of
published results showing that hysteresis and discrete memory
seem to be representative of rock [see, e.g., Guyer et al., 1995a,
b; Boitnott, 1993; Holcomb, 1981].

What are the implications of the existence of hysteresis and
discrete memory in a resonating or propagating wave? These
are mechanisms for additional wave distortion (harmonics).
Hysteresis and discrete memory provide a model where har-
monics are generated from the nonlinear stress-strain curve
and from the cusps of the hysteresis loop (discrete memory).
The discussion of the theory has been covered elsewhere. For
example, Guyer et al. [1995a, b] have included hysteresis and
discrete memory in the nonlinear wave equation for propagat-
ing waves. However, the inclusion of hysteresis and discrete
memory in the perturbation expansion is not sufficient as yet in
providing us with the tools to directly calculate the nonlinear
coefficients in our work. Our theoretical approach is under
appropriate modification at present.

Our work shows further that because the classical perturba-
tion theory may not be directly applied to rock, the information
about the nonlinear response of a given rock sample is not
necessarily obtained in a straightforward manner as it would be
in a material that can be modeled applying classical nonlinear
theory. Thus application of this method at present is perhaps
best suited to comparative study of rocks.

Modulus and Excitation Versus Strain

The excitation-strain curve, for example, that shown in Fig-
ure 4 for Lavoux limestone, provides some measure of the
modulus. This makes intuitive sense because as the excitation
increases, energy is transferred into harmonics. The result of
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measuring the fundamental amplitude is that the calculated
strain is smaller than predicted in the absence of energy trans-
fer to harmonics, i.e., in the absence of elastic nonlinearity.
The strain at the fundamental frequency is smaller than it
should be for a given excitation. Thus the deviation from lin-
earity in the excitation-strain curve is a measure of the energy
transfer, in other words, the nonlinearity itself. We can be
certain that the curve is not a source or instrumentation effect
based on the elastically “linear” materials we have studied.
Figure 2b shows such an example for polycarbonate. The ex-
citation-strain curves could be used to calculate nonlinear
moduli B and & because excitation can be directly related to
applied force; however, if hysteresis and discrete memory are
active, then this would not be a uscful exercise because the
downgoing curve for excitation-strain would differ, and we are
unable to measure the strain in this direction.

Lessons for Measurement of 0 and Modulus

An important lesson from observation of peak shift is that QO
cannot be reliably measured in this circumstance. The imagi-
nary portion of the nonlinear modulus is the attenuation, and
it is related in a very complex manner to the width of the peak
and the associated harmonics [e.g., McCall, 1993; Van Den
Abeele, 1996]. Therefore measurement of Q for anything but a
perfectly linear (i.e., symmetric) resonant curve is not easily
interpreted. In fact, even applying the results of an apparent
linear resonance curve can be misleading. As our experience
with chalk shows, it is possible to observe little or no resonant
peak shift simultaneous with even enormous harmonic gener-
ation. The presence of harmonics will result in an underesti-
mate of Q.

Sweep Rate and Relaxation Effects

We have not addressed sweep rate effects in this paper. We
have examined rate dependence and have observed obvious
rate dependent effects on the resonance curves. The resonance
curves maintain the same general character if, for example, the
sweep rate is increased. Our experiments were conducted at
rates we deemed reasonable after numerous empirical tests. In
addition, we have observed relaxation effects after a frequency
sweep in some rocks. We have noted that it may take tens of
seconds or up to several minutes for a rock to return to its
original “linear” elastic state after a large-amplitude frequency
sweep. In any case, these effects do not affect the conclusions
presented here but must be accounted for in a complete the-

ory.
Application of Nonlinear Elastic Measurements?

A fundamental question remains as to the value of measur-
ing and understanding nonlinear elasticity in rock over and
above academic interest. To first order, the nonlinear elastic
response is certainly related to the microstructure and macro-
structure of the material, the grain to grain contacts, the mi-
crocracks, joints, etc. The contained fluid also plays a very
important role. The sensitivity of the nonlinear response to the
structure and fluid content is far larger than that of standard
linear measurements of wave speed, modulus, and attenuation.
The problem is that these measurements are difficult to make
and great care must be taken in separating the apparatus
effects that can be identical. These are problems that are sur-
mountable and the rewards may be great. We believe that the
work presented in this paper and work on nonlinear elasticity
by our group and other groups will lead us to a new level of
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understanding the makeup of materials (new methods of quan-
tifying the features that contribute to the nonlinear response in
manners that were previously unrealized by application of lin-
ear methods).

Conclusions

We have illustrated the nonlinear response of rock by mon-
itoring resonant peak shift and harmonic generation in several
sedimentary rock types under a variety of saturation condi-
tions. We compared results from numerous “linear” elastic
standards such as PVC and Plexiglas to be certain that the
observations resulted from the nonlinear response of the ma-
terials rather than the associated apparatus. General observa-
tions are difficult to make because the response of the different
rocks is highly varied. There is no clear relation between peak
shift and harmonic generation, for instance. Harmonics always
accompany peak shift, but harmonics can exist with little or no
resonant peak shift. As a result, great care must be taken when
measuring and interpreting modulus and Q from resonance
experiments. This is not a new result [e.g., Winkler et al., 1979];
however, it is clear from our work that initiation of peak shift
cannot be relied on for the onset of nonlinear elastic response.
On the contrary, the only reliable method is to monitor har-
monic generation. General observations that hold for all rocks
over the dynamic strain intervals studied (up to 107> in the
rocks and 10~ in the standards) include the following. As in
all nonlinear oscillators, the upward and downward frequency
sweep is always different in the rocks studied, and the resonant
frequency always shifts downward. Odd harmonics tend to
dominate over even harmonics in amplitude. The excitation-
strain curve is nearly always nonlinear in rocks and always
linear in the standards. We have further demonstrated that the
classical approach to modeling nonlinear oscillators does not
hold for rocks. We believe the key difference between rocks
and a classic nonlinear oscillator is the presence of discrete
memory and hysteresis in rock.

The ramifications of monitoring nonlinear response in rock
may ultimately effect many areas of research in geoscience
including seismology, where the spectral distortion of seismic
waves during propagation must be considered [e.g., Johnson
and McCall, 1994; Bulau et al., 1984; Beresnev et al., 1995].
Other areas of research include rock mechanics and materials
science where the nonlinear response of a material may be
used for characterization purposes. In addition, characteriza-
tion of material property change by monitoring nonlinear re-
sponse may be of value. For instance, these changes include
variations in water saturation for porous media, change in
response to variations in stress, change induced by fatigue
damage, etc.
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